中文 English 联系我们

研究生工作
 当前位置:  首页 >> 学生工作

441-Day-to-day Flow Dynamics for Stochastic User Equilibrium and A General Lyapunov Function
  发表时间:2020-10-18    阅读次数:
Day-to-day Flow Dynamics for Stochastic User Equilibrium and A General Lyapunov Function
441drxf

主讲人:肖峰教授
邀请人:谢驰教授
时间:2020年10月21日(周三)15:00-16:00
地点:通达馆103室(线下)
    腾讯会议链接:https://meeting.tencent.com/s/GlF8zY5IWEDc(线上)
    会议 ID:929 839 268
主讲人简介:
  肖峰,工学博士,教授,博士生导师。毕业于清华大学,获得土木工程学士学位和交通工程硕士学位,并于香港科技大学获得交通工程博士学位,曾任美国加州大学戴维斯分校博士后,英国Maunsell咨询公司香港总部交通规划师。现任西南财经大学大数据研究院副院长,工商管理学院教授。教育部长江学者青年学者,国家自然科学基金优秀青年基金获得者,四川省特聘教授。研究方向包括人工智能算法与交通数据挖掘、交通网络建模和优化、道路拥挤收费、多模式综合交通系统研究、智能交通系统筹。在交通及管理科学研究领域国际著名期刊和会议如Transportation Science,Transportation Research Part A、B、C、D,ISTTT等发表论文40余篇。
主讲内容简介:
  This study establishes a general framework for continuous day-to-day models to capture the perceptual errors in travelers’ day-to-day route choice behavior. As the counterpart of the Beckmann transformation (Beckmann et al., 1956), which has been widely used as a candidate Lyapunov function to prove the stability of continuous day-to-day traffic evolution models that converge to deterministic user equilibrium (DUE), Fisk’s formulation (Fisk, 1980; Watling and Cantarella, 2013) is utilized in our study as a general Lyapunov function for the day-to-day models that converge to stochastic user equilibrium (SUE), so far as the path flow growth rates and the “potentials” of the paths satisfy the condition of negative correlation. A sufficient condition which guarantees the nonnegativity of the path flow is also provided. The logit dynamic (Sandholm, 2010), the logit-based smith dynamic (Smith and Watling, 2016) and the logit-based BNN dynamic (Brown and Von Neumann, 1950) are given as three examples under this framework. Moreover, we extend the second-order day-to-day model in Xiao et al. (2016) for SUE. Some properties of the new model, such as fixed point and stability, are investigated. Interestingly, we find that even the model converges to SUE, the path flows could still go negative during the oscillation under extreme situations. A numerical experiment is conducted to demonstrate the existence of negative path flow for the second-order model.
  欢迎各位老师、同学参加同路人学术论坛!

36365线路检测中心no1研究生会

36365线路检测中心no1青年教师沙龙